- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000000010000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Austrin, Per (1)
-
Bercea, Ioana O (1)
-
Goswami, Mayank (1)
-
Limaye, Nutan (1)
-
Srinivasan, Adarsh (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Given a k-CNF formula and an integer s, we study algorithms that obtain s solutions to the formula that are maximally dispersed. For s=2, the problem of computing the diameter of a k-CNF formula was initiated by Creszenzi and Rossi, who showed strong hardness results even for k=2. Assuming SETH, the current best upper bound [Angelsmark and Thapper '04] goes to 4n as k→∞. As our first result, we give exact algorithms for using the Fast Fourier Transform and clique-finding that run in O(2^((s−1)n)) and O(s^2|Ω_F|^(ω⌈s/3⌉)) respectively, where |Ω_F| is the size of the solution space of the formula F and ω is the matrix multiplication exponent. As our main result, we re-analyze the popular PPZ (Paturi, Pudlak, Zane '97) and Schöning's ('02) algorithms (which find one solution in time O∗(2^(ε_k n)) for εk≈1−Θ(1/k)), and show that in the same time, they can be used to approximate the diameter as well as the dispersion (s>2) problems. While we need to modify Schöning's original algorithm, we show that the PPZ algorithm, without any modification, samples solutions in a geometric sense. We believe that this property may be of independent interest. Finally, we present algorithms to output approximately diverse, approximately optimal solutions to NP-complete optimization problems running in time poly(s)O(^(2εn)) with ε<1 for several problems such as Minimum Hitting Set and Feedback Vertex Set. For these problems, all existing exact methods for finding optimal diverse solutions have a runtime with at least an exponential dependence on the number of solutions s. Our methods find bi-approximations with polynomial dependence on s.more » « less
An official website of the United States government

Full Text Available