skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Srinivasan, Adarsh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Given a k-CNF formula and an integer s, we study algorithms that obtain s solutions to the formula that are maximally dispersed. For s=2, the problem of computing the diameter of a k-CNF formula was initiated by Creszenzi and Rossi, who showed strong hardness results even for k=2. Assuming SETH, the current best upper bound [Angelsmark and Thapper '04] goes to 4n as k→∞. As our first result, we give exact algorithms for using the Fast Fourier Transform and clique-finding that run in O(2^((s−1)n)) and O(s^2|Ω_F|^(ω⌈s/3⌉)) respectively, where |Ω_F| is the size of the solution space of the formula F and ω is the matrix multiplication exponent. As our main result, we re-analyze the popular PPZ (Paturi, Pudlak, Zane '97) and Schöning's ('02) algorithms (which find one solution in time O∗(2^(ε_k n)) for εk≈1−Θ(1/k)), and show that in the same time, they can be used to approximate the diameter as well as the dispersion (s>2) problems. While we need to modify Schöning's original algorithm, we show that the PPZ algorithm, without any modification, samples solutions in a geometric sense. We believe that this property may be of independent interest. Finally, we present algorithms to output approximately diverse, approximately optimal solutions to NP-complete optimization problems running in time poly(s)O(^(2εn)) with ε<1 for several problems such as Minimum Hitting Set and Feedback Vertex Set. For these problems, all existing exact methods for finding optimal diverse solutions have a runtime with at least an exponential dependence on the number of solutions s. Our methods find bi-approximations with polynomial dependence on s. 
    more » « less